Compatibility
Image semantic segmentation
- Datasets:
- Models:
- PyTorch (TorchScript format):
- Input shape:
(batch, channels, height, width)
- Output shape:
(batch, classes, height, width)
- JSON configuration file format:
{ "normalization": { "mean": [<r>, <g>, <b>], "std": [<r>, <g>, <b>] }, "batch_size": 4 }
- Input shape:
- Tensorflow (SavedModel format):
- Input shape:
(batch, height, width, channels)
- Output shape:
(batch, height, width, classes)
- JSON configuration file format:
{ "image_size": [<height>, <width>], "batch_size": 4 }
- Input shape:
- ONNX: coming soon
- PyTorch (TorchScript format):
- Metrics:
- Intersection over Union (IoU), Accuracy
LiDAR semantic segmentation
- Datasets:
- Models:
- PyTorch (TorchScript format). Validated models: RandLA-Net and KPConv from Open3D-ML.
- Input shape: defined by the
input_format
tag. - Output shape:
(num_points)
- JSON configuration file format:
{ "seed": 42, "input_format": "o3d_randlanet", "sampler": "spatially_regular", "recenter": { "dims": [ 0, 1 ] }, "ignored_classes": [ "void" ], "num_points": 45056, "grid_size": 0.06, "num_neighbors": 16, "sub_sampling_ratio": [ 4, 4, 4, 4 ] }
- Input shape: defined by the
- ONNX: coming soon
- PyTorch (TorchScript format). Validated models: RandLA-Net and KPConv from Open3D-ML.
- Metrics:
- Intersection over Union (IoU), Accuracy
Object detection
Coming soon.