Compatibility
Image semantic segmentation
- Datasets:
- RUGD
- Rellis3D
- GOOSE
- WildScenes
- Custom GAIA format: Parquet file containing samples and labels relative paths and a JSON file with the dataset ontology.
- Generic: simply assumes a different directory per split, different suffixes for samples and labels, and a JSON file containing the dataset ontology.
- Models:
- PyTorch (TorchScript compiled format and native modules):
- Input shape:
(batch, channels, height, width) - Output shape:
(batch, classes, height, width)
- Input shape:
- Tensorflow (SavedModel compiled format and native Tensorflow/Keras modules):
- Input shape:
(batch, height, width, channels) - Output shape:
(batch, height, width, classes) - JSON configuration file format:
- Input shape:
- ONNX: coming soon
Each model must be coupled with a JSON configuration file:
{ "normalization": { "mean": [<r>, <g>, <b>], "std": [<r>, <g>, <b>] }, "resize": { # optional "width": <px>, "height": <px> }, "crop": { # optional "width": <px>, "height": <px> }, "batch_size": <n> } - PyTorch (TorchScript compiled format and native modules):
- Metrics:
- Intersection over Union (IoU), Accuracy
- Computational cost:
- Number of parameters, average inference time, model size
LiDAR semantic segmentation
- Datasets:
- Rellis3D
- GOOSE
- WildScenes
- Custom GAIA format: Parquet file containing samples and labels relative paths and a JSON file with the dataset ontology.
- Generic: simply assumes a different directory per split, different suffixes for samples and labels, and a JSON file containing the dataset ontology.
- Models:
- PyTorch (TorchScript compiled format and native modules). As of now, we have tested Open3D-ML, mmdetection3d, SphereFormer, and LSK3DNet models.
- Input shape: defined by the
input_formattag. - Output shape:
(num_points) - JSON configuration file format examples (different depending on the model):
{ "model_format": <"o3d_randlanet" | "o3d_kpconv" | "mmdet3d" | "sphereformer" | "lsk3dnet">, "n_feats": <3|4>, // without/with intensity "seed": <int>, // -- EXTRA PARAMETERS PER MODEL (EXAMPLES) -- // o3d kpconv "sampler": "spatially_regular", "min_in_points": 10000, "max_in_points": 20000, "in_radius": 4.0, "recenter": { "dims": [ 0, 1, 2 ] }, "first_subsampling_dl": 0.075, "conv_radius": 2.5, "architecture": [ "simple", "resnetb", "resnetb_strided", "resnetb", "resnetb", "resnetb_strided", "resnetb", "resnetb", "resnetb_strided", "resnetb", "resnetb", "resnetb_strided", "resnetb", "nearest_upsample", "unary", "nearest_upsample", "unary", "nearest_upsample", "unary", "nearest_upsample", "unary" ], "num_layers": 5, "num_points": 45056, "grid_size": 0.075, "num_neighbors": 16, "sub_sampling_ratio": [ 4, 4, 4, 4 ], // o3d randlanet "sampler": "spatially_regular", "recenter": { "dims": [ 0, 1 ] }, "num_points": 45056, "grid_size": 0.075, "num_neighbors": 16, "sub_sampling_ratio": [ 4, 4, 4, 4 ], // sphereformer "voxel_size": [ 0.05, 0.05, 0.05 ], "voxel_max": 120000, "pc_range": [ [ -22, -17, -4 ], [ 30, 18, 13 ] ], "xyz_norm": false, // lsk3dnet "min_volume_space": [ -120, -120, -6 ], "max_volume_space": [ 120, 120, 11 ] } - Input shape: defined by the
- ONNX: coming soon
- PyTorch (TorchScript compiled format and native modules). As of now, we have tested Open3D-ML, mmdetection3d, SphereFormer, and LSK3DNet models.
- Metrics:
- Intersection over Union (IoU), Accuracy
- Computational cost:
- Number of parameters, average inference time, model size
Image object detection
- Datasets:
- Models:
- PyTorch (TorchScript compiled format and native modules):
- Input shape:
(batch, channels, height, width) - Output shape:
(batch, num_detections, 6)where each detection contains[x1, y1, x2, y2, confidence, class_id] - Output shape (torchscript-exported YOLO models):
(num_box_coords + num_classes, num_candidate_boxes) - JSON configuration file format:
{ "normalization": { "mean": [<r>, <g>, <b>], "std": [<r>, <g>, <b>] }, "resize": { # optional "width": <px>, "height": <px> }, "confidence_threshold": <float>, "nms_threshold": <float>, "max_detections_per_image": <int>, "batch_size": <n>, "device": "<cpu|cuda|mps>", "evaluation_step": <int> # for live progress updates during evaluation "model_format": "<coco|yolo>" } - Input shape:
- PyTorch (TorchScript compiled format and native modules):
- Metrics:
- Mean Average Precision (mAP), including COCO-style mAP@[0.5:0.95:0.05]
- Area Under the Precision-Recall Curve (AUC-PR)
- Precision, Recall, F1-Score
- Per-class metrics and confusion matrices
- Computational cost:
- Number of parameters, average inference time, model size
- GUI Support:
- Real-time inference visualization
- Interactive dataset browsing
- Progress tracking during evaluation