Compatibility

Image semantic segmentation

  • Datasets:
    • Rellis3D
    • GOOSE
    • Custom GAIA format: Parquet file containing samples and labels relative paths and a JSON file with the dataset ontology.
    • Generic: simply assumes a different directory per split, different suffixes for samples and labels, and a JSON file containing the dataset ontology.
  • Models:
    • PyTorch (TorchScript compiled format and native modules):
      • Input shape: (batch, channels, height, width)
      • Output shape: (batch, classes, height, width)
    • Tensorflow (SavedModel compiled format and native Tensorflow/Keras modules):
      • Input shape: (batch, height, width, channels)
      • Output shape: (batch, height, width, classes)
      • JSON configuration file format:
    • ONNX: coming soon

    Each model must be coupled with a JSON configuration file:

      {
          "normalization": {
              "mean": [<r>, <g>, <b>],
              "std": [<r>, <g>, <b>]
          },
          "resize": {  # optional
              "width": <px>,
              "height": <px>
          },
          "crop": {  # optional
              "width": <px>,
              "height": <px>
          },
          "batch_size": <n>
      }
    
  • Metrics:
    • Intersection over Union (IoU), Accuracy
  • Computational cost:
    • Number of parameters, average inference time, model size

LiDAR semantic segmentation

  • Datasets:
    • Rellis3D
    • GOOSE
    • Custom GAIA format: Parquet file containing samples and labels relative paths and a JSON file with the dataset ontology.
    • Generic: simply assumes a different directory per split, different suffixes for samples and labels, and a JSON file containing the dataset ontology.
  • Models:
    • PyTorch (TorchScript compiled format and native modules). As of now, we have tested RandLA-Net and KPConv from Open3D-ML.
      • Input shape: defined by the input_format tag.
      • Output shape: (num_points)
      • JSON configuration file format:
        {
            "seed": 42,
            "input_format": "o3d_randlanet",
            "sampler": "spatially_regular",
            "recenter": {
                "dims": [
                    0,
                    1
                ]
            },
            "ignored_classes": [
                "void"
            ],
            "num_points": 45056,
            "grid_size": 0.06,
            "num_neighbors": 16,
            "sub_sampling_ratio": [
                4,
                4,
                4,
                4
            ]
        }
      
    • ONNX: coming soon
  • Metrics:
    • Intersection over Union (IoU), Accuracy
  • Computational cost:
    • Number of parameters, average inference time, model size

Object detection

Coming soon.