Install Detection Metrics using Docker
To quickly get started with Detection Metrics, we provide a docker image.
- Download docker image and run it
docker run -dit --name detection-metrics -v [local_directory]:/root/volume/ -e DISPLAY=host.docker.internal:0 jderobot/detection-metrics:noetic
This will start the GUI, provide a configuration file (appConfig.yml can be used) and you are ready to go. Check out functionality for more information
Install Detection Metrics from source for developers (only Linux)
To use the latest version of Detection Metrics you need to compile and install it from source.
Requirements
Common deps
Ubuntu | MacOS |
---|---|
sudo apt install build-essential git cmake rapidjson-dev libssl-dev sudo apt install libboost-dev libboost-filesystem-dev libboost-system-dev libboost-program-options-dev python-dev python-numpy
|
sudo easy_install numpy brew install cmake boost rapidjson
|
Ubuntu | MacOS |
---|---|
sudo apt install libgoogle-glog-dev libyaml-cpp-dev qt5-default libqt5svg5-dev sudo apt-get install libjpeg8-dev libtiff5-dev libjasper-dev libpng12-dev sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev sudo apt-get install libxvidcore-dev libx264-dev
|
brew install glog yaml-cpp qt Also, just add qt in your PATH by running: echo 'export PATH="/usr/local/opt/qt/bin:$PATH"' >> ~/.bash_profile
|
Inferencers
Install only the inferencers that you need.
-
OpenCV 4.2 (with CUDA GPU support) including Darknet
If you don’t need GPU support (only applicable for Darknet YOLO with OpenCV), just ignore cmake options related with CUDA and GPU.
Ubuntu | MacOS |
---|---|
cd ~ wget -O opencv.zip https://github.com/opencv/opencv/archive/4.2.0.zip wget -O opencv_contrib.zip https://github.com/opencv/opencv_contrib/archive/4.2.0.zip unzip opencv.zip <br> unzip opencv_contrib.zip mv opencv-4.2.0 opencv mv opencv_contrib-4.2.0 opencv_contrib
|
brew install opencv |
cd ~/opencv mkdir build cd build
|
|
You must change CUDA_ARCH_BIN version to yours GPU architecture version. cmake -D WITH_QT=ON -D WITH_GTK=OFF -D WITH_CUDA=ON -D WITH_CUDNN=ON -D OPENCV_DNN_CUDA=ON -D ENABLE_FAST_MATH=1 -D CUDA_FAST_MATH=1 -D CUDA_ARCH_BIN=**7.0 [CHANGE THIS ONE]** -D WITH_CUBLAS=1 -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D INSTALL_C_EXAMPLES=ON -D INSTALL_PYTHON_EXAMPLES=ON -D BUILD_EXAMPLES=ON -D BUILD_opencv_python2=ON -D WITH_FFMPEG=1 -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib/modules ..
|
|
make -j8 |
|
sudo make install |
Reference: How to use OpenCV DNN module with Nvdia GPUs, CUDA and CUDNN
-
Tensorflow
To use Tensorflow and/or Keras, you would need to install them.
To install Tensorflow:
pip install tensorflow
or
pip install tensorflow-gpu
-
Keras
To install Keras:
pip install keras
-
PyTorch
To install PyTorch:
pip install torch
Optional Dependencies
CUDA (For GPU support)
NVIDIA_GPGKEY_SUM=d1be581509378368edeec8c1eb2958702feedf3bc3d17011adbf24efacce4ab5 && \
NVIDIA_GPGKEY_FPR=ae09fe4bbd223a84b2ccfce3f60f4b3d7fa2af80 && \
sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub && \
sudo apt-key adv --export --no-emit-version -a $NVIDIA_GPGKEY_FPR | tail -n +5 > cudasign.pub && \
echo "$NVIDIA_GPGKEY_SUM cudasign.pub" | sha256sum -c --strict - && rm cudasign.pub && \
sudo sh -c 'echo "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64 /" > /etc/apt/sources.list.d/cuda.list' && \
sudo sh -c 'echo "deb http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64 /" > /etc/apt/sources.list.d/nvidia-ml.list'
Update and install
sudo apt-get update
sudo apt-get install -y cuda
Below is a list of more optional dependencies you may require depending on your usage.
-
Camera Streaming Support
Detection Metrics can currently read ROS and ICE Camera Streams. So, to enable Streaming support, install any one of them.
Note: Be Sure to checkout functionality for tutorials on how to use the above mentioned functionalities and frameworks.
How to compile Detection Metrics:
Once you have all the required dependencies installed just run:
git clone https://github.com/JdeRobot/DetectionMetrics
cd DetectionMetrics/DetectionMetrics
mkdir build && cd build
cmake ..
Note: GPU support is enabled by default
make -j4
Once it is built, you will find various executables in different folders ready to be executed .
Starting with Detection Metrics
The best way to start is with our beginner’s tutorial for Detection Metrics.
If you have any issue feel free to drop a mail vinay04sharma@icloud.com or create an issue for the same.