detectionmetrics.models package
Submodules
detectionmetrics.models.model module
- class detectionmetrics.models.model.ImageSegmentationModel(ontology_fname: str, model_cfg: str)
Bases:
ABC
Parent image segmentation model class
- Parameters:
ontology_fname (str) – JSON file containing model output ontology
model_cfg – JSON file containing model configuration (e.g. image size or
normalization parameters) :type model_cfg: str
- abstract eval(dataset: ImageSegmentationDataset, batch_size: int = 1, split: str = 'all', ontology_translation: str | None = None) DataFrame
Perform evaluation for an image segmentation dataset
- Parameters:
dataset_test – Image segmentation dataset for which the evaluation will
be performed :type dataset_test: ImageSegmentationDataset :param batch_size: Batch size, defaults to 1 :type batch_size: int, optional :param split: Split to be used from the dataset, defaults to “all” :type split: str, optional :param ontology_translation: JSON file containing translation between dataset and model output ontologies :type ontology_translation: str, optional :return: DataFrame containing evaluation results :rtype: pd.DataFrame
- abstract inference(image: Image) Image
Perform inference for a single image
- Parameters:
image (Image.Image) – PIL image.
- Returns:
segmenation result as PIL image
- Return type:
Image.Image
detectionmetrics.models.onnx module
- class detectionmetrics.models.onnx.OnnxImageSegmentationModel(ontology_fname, model_cfg)
Bases:
ImageSegmentationModel
- eval(dataset, batch_size=1, split='all', ontology_translation=None)
Perform evaluation for an image segmentation dataset
- Parameters:
dataset_test – Image segmentation dataset for which the evaluation will
be performed :type dataset_test: ImageSegmentationDataset :param batch_size: Batch size, defaults to 1 :type batch_size: int, optional :param split: Split to be used from the dataset, defaults to “all” :type split: str, optional :param ontology_translation: JSON file containing translation between dataset and model output ontologies :type ontology_translation: str, optional :return: DataFrame containing evaluation results :rtype: pd.DataFrame
- inference(image)
Perform inference for a single image
- Parameters:
image (Image.Image) – PIL image.
- Returns:
segmenation result as PIL image
- Return type:
Image.Image
detectionmetrics.models.tensorflow module
- class detectionmetrics.models.tensorflow.ImageSegmentationTensorflowDataset(dataset: ImageSegmentationDataset, image_size: Tuple[int, int], batch_size: int = 1, split: str = 'all', lut_ontology: dict | None = None)
Bases:
object
Dataset for image segmentation Tensorflow models
- Parameters:
dataset (ImageSegmentationDataset) – Image segmentation dataset
image_size (Tuple[int, int]) – Image size in pixels (width, height)
batch_size (int, optional) – Batch size, defaults to 1
split (str, optional) – Split to be used from the dataset, defaults to “all”
lut_ontology (dict, optional) – LUT to transform label classes, defaults to None
- load_data(images_fnames: List[str], labels_fnames: List[str]) Tuple[Tensor, Tensor]
Function for loading data for each dataset sample
- Parameters:
images_fnames (List[str]) – List containing all image filenames
labels_fnames (List[str]) – List containing all corresponding label filenames
- Returns:
Image and label tensor pairs
- Return type:
Tuple[tf.Tensor, tf.Tensor]
- read_image(fname: str, label=False) Tensor
Read a single image or label
- Parameters:
fname (str) – Input image or label filename
label (bool, optional) – Whether the input data is a label or not, defaults to False
- Returns:
Tensorflow tensor containing read image or label
- Return type:
tf.Tensor
- class detectionmetrics.models.tensorflow.TensorflowImageSegmentationModel(model_fname: str, model_cfg: str, ontology_fname: str)
Bases:
ImageSegmentationModel
Image segmentation model for Tensorflow framework
- Parameters:
model_fname (str) – Tensorflow model in SavedModel format
model_cfg (str) – JSON file containing model configuration
ontology_fname (str) – JSON file containing model output ontology
- eval(dataset: ImageSegmentationDataset, batch_size: int = 1, split: str = 'all', ontology_translation: str | None = None) DataFrame
Perform evaluation for an image segmentation dataset
- Parameters:
dataset_test – Image segmentation dataset for which the evaluation will
be performed :type dataset_test: ImageSegmentationDataset :param batch_size: Batch size, defaults to 1 :type batch_size: int, optional :param split: Split to be used from the dataset, defaults to “all” :type split: str, optional :param ontology_translation: JSON file containing translation between dataset and model output ontologies :type ontology_translation: str, optional :return: DataFrame containing evaluation results :rtype: pd.DataFrame
- inference(image: Image) Image
Perform inference for a single image
- Parameters:
image (Image.Image) – PIL image
- Returns:
segmenation result as PIL image
- Return type:
Image.Image
detectionmetrics.models.torch module
- class detectionmetrics.models.torch.ImageSegmentationTorchDataset(dataset: ImageSegmentationDataset, transform: Compose, target_transform: Compose, split: str = 'all')
Bases:
Dataset
Dataset for image segmentation PyTorch models
- Parameters:
dataset (ImageSegmentationDataset) – Image segmentation dataset
transform (v2.Compose) – Transformation to be applied to images
target_transform (v2.Compose) – Transformation to be applied to labels
split (str, optional) – Split to be used from the dataset, defaults to “all”
- class detectionmetrics.models.torch.TorchImageSegmentationModel(model_fname: str, model_cfg: str, ontology_fname: str)
Bases:
ImageSegmentationModel
- eval(dataset: ImageSegmentationDataset, batch_size: int = 1, split: str = 'all', ontology_translation: str | None = None) DataFrame
Perform evaluation for an image segmentation dataset
- Parameters:
dataset_test – Image segmentation dataset for which the evaluation will
be performed :type dataset_test: ImageSegmentationDataset :param batch_size: Batch size, defaults to 1 :type batch_size: int, optional :param split: Split to be used from the dataset, defaults to “all” :type split: str, optional :param ontology_translation: JSON file containing translation between dataset and model output ontologies :type ontology_translation: str, optional :return: DataFrame containing evaluation results :rtype: pd.DataFrame
- inference(image: Image) Image
Perform inference for a single image
- Parameters:
image (Image.Image) – PIL image
- Returns:
segmenation result as PIL image
- Return type:
Image.Image